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Optical Analogs of Model Atoms in Fields
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“Quant urn mechanics is not a bad preparation for optics.” . Dennis (labor

Abstract
The equivalence of the paraxial wave equation to a time-dependent Schr6dinger

equation is exploited to construct optical analogs of model atoms in monochromatic
fields. The approximation of geometrical optics provides the analog of the corresponding
classical mechanics, optical analogs of Rabi oscillations, photoionization, Aabilization,
and the Kramcrs- Henneberger transformation are discussed. One possibility for experi.
mental realization of such optical analogs is proposed. These aaalogu may be useful for
studies of “quantum chaos” when the ray trajectories are chaotic.

Everyone knows there are many analogies between optics and quantum mechanica,
1 would like to suggest here that some recent effects of interest for atoms in strong fields
might possibly be realized in the propagation of light.

First recall that the time-dependent Schr&Iinger equation is formally the same as
the paraxial wave equation of optics. This is well known to optical physicists. (See, for
i: tance, Cook [1] or Stoler [2].) We will briefly derive this correspondence, with the
slight generalizatl mof allowitlg the refractive index to vary both axially and transversely.
This will lead us to an optical analog of an atom in a nlonochromutic field,

Assume a !incarly polarized monochromatic field with electric field amplitude
E(r)e-’wt. E satisfies the Helmholtz cquaticm, VIE+ k’nz~ = O, where k s w/c and
n is the refractive index, Write E(r) = Eo(rL, Z)eik’, where E. is assumed to be slowly
varying in : compared with ei&’; rl is the coordinat~ in the zy plane, perpendicular to
the dirmtion of propagation z, Then we can drop (.12Eo/i)z2 compared with k8Eo/8z in
tlw fielmholtz equation and work with the paraxial wave equation

(1)

1



where Vi s (&/&z +&/t3ya). Obviously the paraxial wave equation has the same form
as the Schr6dinger equation for a particle constrained to move in two spatial dimensions:

(2)

It is convenient to scale the time and space variables, Introduce in (2) the di-
mensionless time ~ = (lt/ma2)t = Uot and the dimensionl~ss coordinate variables
x = r/a$Y = y/a, where a is some convenient length. Then (2) becomes

(3)

where V: = a2V~ is the transverse Laplacian in the X, Y variables. Similarly introduce
the dimensionless coordinate variables Z = 2z/kb2, X = z/b, Y = y/b, where b is some
convenient length scale for the optics problem, so that (1) becomes

(4)

The effective potential in this “optical Schr6dinger equation” is thus

vopta -(huo);k’b2(n2 - 1). (5)

To keep things really simple we will consider a few one-dimensional examples, where
equations (3) and

Classical (Ray)

The classical
If we use (7) to

(4) become respectively

.at 182$
Lqxa, :)$

% = -izm+hu” (6)

.r3Eo 182E0..—
%= 28X2

-h&,(Xb, \kb2Z)Eo.
+ two

(7)

Limit

Newton equation of motion corresponding to (6) is mi = -t3V/&.
construct the corresponding ‘optical Newton equation,” we obtain

(Pxfrk!2 % th/8z for n 2? 1. ‘1’his is the paraxial approximation to the ray cqllation
(d/ds)(ndr/ds) = Vn for a position vector r of a point on a ray, with s a distance
Ilmsured along the ray. [3]

This cxamp]e bril]gs out a simple but important point. In the approximation of
gcomrtricat optirs one deals with ~arnilies of rays, for a ray merely gives us some infor-
mation about a point on the wavcfront. In the same way the comparison of cliussical
and qui~nturn theories Illust involve an rnsembk of trajectories, This is WCIIknown, of
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course, but sometimes it seems to be forgotten by those who express great surpise at
the fact that cl=sical systems can exhibit chaos (in the sense of a positive Lyapunov
exponent), while the correspond~ng quantum systems do not. This can be understood
in part froin the simple consequence of Louiville’s theorem that classical disdm”butions of
trajectories cannot exhibit the “very sensitive dependence on initial conditions” t}~at is
the hallmark of classical chaos. [4]

The Harmonic Oscillator

According to equations (5)-(7) we can produce the optical analog of a harmonic
oscillator by making V.pt/hLOO= –~k2b2(n2 - 1) = CX2b2, or n(z) = 1- DT2 for n ~ 1,
where C, D are positive constants. This defines a lenslike medium, [5] also known as
a graded- indez waveguide. In this c~e the ‘optical Newton equation” above becomes
&x/dz2 +Dz = O, so that the ray displacements oscillate harmonically with propagation
in the Ienslike medium. In the wave-optical description, as in the quantum-mechanical
oscillator, the modes of the field in the lendike medium are such that EO(Z) is a Hermite
polynomial, the lowest-order mode being the ubiquitous Gaussian beam. Since spherical
mirrors affect rays in basica!ly the same way M a thin lens, it should come as no surprise
to anyone who knows elementary quantum mechanics that the modes of stable laser
resonators are Gaussian fields.

Enharmonic Oscillator

Similarly we can construct the optical analog of an enharmonic oscillator with po-
tential V(z) a Zz + Az’, say, by choosing n(z) = 1 - ~(z2 + .4z4). By choosing the
transverse index variation n(z) appropriately we can ‘design” any enharmonic oscillator
we like,

Time-Dependent Potential

Thus far we have taken n to be a function of z but not z. That is, we have not
allowed the refractive index to vary along the direction of propagation. For the quantum
problem, this means W.I have restricted ourselves to time-independent potentials. To
develop optical analogs J driven quantum systems with time-dependent perturbations,
we now allow n to be a function of both z and z

A potential that has been used recently in numerical experiments on above-threshold
ionization and highordcr I,armonic gerwration is [6]

v(T,t)= =.= -
i

tUZACOShJt, (8)
. X2 + at

c,r

+V(XU, :) —
0

= -7x:.Ti- XFCOS pr, (9)
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where we choose
in atomic units.
obtained when

hue = e2/a0, a = aa, g = w/uO, and F = A(e/a~)-~ is the field strength
The optical analog of the Schr6dinger equation with this potential is

in which c= (7) becomes

.8Ee 1 i92Eo
–-— + U(X)E. - xFcos(pz)Eo.

‘z = 2 axz

(lo)

(11)

with U(X) = - (x2 + 1)-112. Numerical so!utions of such a one-dimensional Schr6dinger
equation go back at Icast as fw as Goldberg, Schey, and Schwartz. [7] More recently such
numerical solutions have been used in studies of quantum chaos [8] and above-threshold
ionization. [6,9]

Since paraxial wave propagation with a periodically varying index like (10) is de-
scribed by a Schr6dinger equation for a particle in a time-independent potential plus
a sinusoidal applied field, we can do all the usual things done to treat atoms in fields.
For instance, wc can use an expansion in ?wsis states: Conuider solutions of the “unper-
turbed” system defined by

.8Ee 182E0—-—
‘m = 2 ax~ + ‘( X) E*”

(12)

(We will assume LJ(-X) = U(X). ) Write E.(X, Z) = g(X)e-iKa, so that g(X) satisfies
the eigenva!ue equation

1 &g
- ~~ + Lqx)g(x)= Kg(x). (13)

The solutions gn(X) with eigenvalues K. define the optical modes for the unperturbed
paraxial wave equation (12). To solve (11) we can write

E.(X, Z) = ~ dn(Z)g.(X)e-iKnz ,
n

and then (11) implies

dam

‘m = -Fcos(pZ) ~ X.me-i(K”’-K’)2 am(Z),
m

(14)

(15)

xnm ~ Im(f.Yg:(x)A’gmoo.” (!6)
-m

‘1’hus the mode amplitmlcs am(Z) sati~fy the mmc equations M the prolmbility ampli-
tudcs of thc corrcspom!ing q{lalltull~-ln~chanical problcm.

4



,

Two-State Atom

Suppose the field is propagating in the lowest-order gl mode and encounters a
sinusoidal perturbation along Z, such that p ~ K2 - KI in equation (15). If lKm - Kl I
and lKfi - Kal for n >2 are sufficiently different from p that all the u.(Z) obtained
from (15) with n >2 are very small, we can approximate (15) by

(17)

.(fa, ~ 1
— - –pal(z),

‘ dZ
(18)

if wc assume p = K2 - xl. (The approximation made in writing these equations will be
recognized as the

This means that,
gation, such that

“rotating- wave approximation,”) Thus

(19)

if we have a sinusoidal index variation along the direction of propa-
(11) applies, and if the spatial frequency of this variation equals the

difference KZ- Xl” between the eigenvaluea of the modes ~(X)e-iK’z and gl(X)e-iK’z,
then as the field propagates it will oscillate between these two modes at the “Rabi fre.
quency” ~lXlzlF. Obviously we can construct “optical Bloch equations” from (17) and
(18).

One-Dimensional Hydrogen Atom

NOWlet us return to the optical analog(11 ) of a ‘one-dimensional hydrogen atom.”
Suppose that a wave corresponding to the lowest-order mode g](X) is launched into a
medium with refractive index (10). If F = O such a wave will, ideally, propagate as
gl(4Y)e-’KJz. (For the present discussion we can consider any superposition of eigen-
modes, but fur simplicity let us just msumc the lowest-order mode corresponding to the
“ground state” of the atom in the quantum analog, We will also ignore “turn-on” eflects
associated with the sinusoidal perturbation. ) If F # O the sinusoidal perturbation can
cause ‘transitions” among modes, as we have jlst seen for the optical analog of a two-
state atom. Rut in addition to tran~itiorrs caused by such resonances between the spatial
frequency of the index variation and the difference between two mode wave numbers, we
can induce transitions at any ~patial frequency of the index variations if the amplitude of
these variations is large enough. For sufficiently large F we can have ‘photoionization”:
the optical analog is a transverse spreading of the wave into the “continuum,” i.e., a
transition in which at Ie=t part of the field is no lunger mociated with a transversely
(WilflIICdpropagating rnodc,
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There are obviously optical analogs of above-threshold ionization, harmonic gener-
ation, and stabilization. Let us considrr the latter phenomenon. To do this we will first
derive the optical analog of the Kramcrs-Hcnnebcrger (KH) transformation.~

We can caat (11) in the language of brm, kets, and iinear vector spaces of squarc-
intcgrable functions:

‘~ E18ZI .)= [;P’ + u(x) - xFcos(pz)] IEO), (20j

with [X, P) = i. Write F cos(pZ) = -OA/OZ and defim?

Then it follows from (20) that

or

i&iq)=[~~z+~(~ + XR(Z))] If%),

.i3E: 1 d2E:
-“- — + U(X + x~(z))f?;,%7 = 2 a.v

(21)

(22)

(23)

where XR( Z), satisfying &XR/dZa = F coa(pZ), is the ray displacement determined by
geometrical optics with only the :-dependent part of the refractive index. The transfor-
mation from (20) to (22) is the ‘optical K-H trrmsformation. ” Equation (23) is equivalent
to

(24)

where nO is the z-independent part of the refractive index and XR(Z) is the gwmecrical
ray displacement without this part of the index.

Stabilization

By analogy to the atomic cue, stabilization can occur if ~ is large and if a high-
(spat ial) frequency approximation is justified. In the high-frequency approximation we
replace ra$(z + z~(z)) - 1 by its average over z. Then in effect the z-dependent part
of the index is removed, and there is nothing left to cause transitions among different
modes. In particular, the field will remain confined transversely to a Iargc degree,

‘As I learned in s lectureby MM. MiUlcmm (Lea Alarnoa National Laboratory, April 3, 1991),
this transformation mmy be tr~ced ●t least aa far back as W. Psuli and M, Fierz, Nuovo Cirn. 13, 167
( 1938). In fncl a very oimilar transformation appears in a primarily relativklic setting in F, Illoch and

A Nordsirck, Phye. Rev 32, 54 ( !!!37).
“Ihe readernmy rrcognize (he truisformation from l&) LO 1~~) as a Power-Zienau tr~nnformation

followed bj the KH trmdorwkion.
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Can These Optical Analogs be Constructed?

[t is not clifiicult to imagine fabricating a medium with any transverse index vari-
ation we like, o let us resume this can be done. (It can pretty much be done with
quantum wells, for instance. ) The difficult part of producing an index variation like (10)
is to get the part varying = z COS(A2).

Here is onc way this might be done. Recall the paraxial ray equation #z/dza =
&~/i3z and suppose wc bend the propagation path in such a way that the optical axis
(z = O) is displaced by y(z). Then z is transformed to r + y(z) and the paraxial ray
equation is transformed to fl(z + y)/dza = ih/&, or

if dz/dz, dy/dz are not too large. This is the equation one gets with index n(z) -
Idy/ifz2, In other words, the index is changed from n(z) to n(z) + C(z)Z, where C(z)
is the curvature of the guiding optical axis. In particular,

n(:c, z) = n(z) + AIZCOS(AZ) (26)

if y(z) = COS(AZ). This is exactly the type of index we n=d to realize the optical analog
of a model atom in a monochromatic field.

Note that a simple sinusoidal variation with z of the index, as in a distributed
fceclback l~er,3 for instance, is not enough; we require a sinusoidal variation times Z.
This occurs when we bend the guiding axis as just described. Of course we should not
bend the axis so strongly that the paraxial approximation breaks down, or that the
boundaries of the medium intercept the beam.

Remarks

The simplified discussion just given is sufficient to bring out a few important
i)oiots, One of these is that phenomena such as stabilization are not distinctly quantum-
]nechanical, for we have seen that they can be realized with classical waves. It should
also be clear that the same sorts of conclusions inferred from the one-dimensional model
carry over to the real case of two-dimensional transverse beam variations.

.4s mentioned earlier, the optical analogy might be useful in studies of “quantum
chaos, ” If the index variations are such that the ray trajectories are chaotic, then the
corresponding classical.mechanical system will bc chaotic. The question of how this
chaos might manifest itself quantum mechanically is then mathematically identical to
the question of how the chaos of geometrical rays might manisfcst ltsclf in wave propa-

gation.

30[ course the distributed fmlback CMC involves koth b~ckward- md forward-propagating waves,

under (olldltions for which thr paraxial approxilllation is not applicable.
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